Region-Wise Distribution of High-Risk Human Papillomavirus Types in Squamous Cell Carcinomas of the Cervix in India

Pillai MR¹, Babu JM¹, Jissa VT¹, Lakshmi S², Chiplunkar SV^{3,4}, Patkar M^{3,4}, Tongaonkar H^{3,4}, Reddy BKM⁵, Kumar Chakka, Siddiqi M⁷, Roychowdury S⁷, Abraham P⁸, Peedicayil A⁹, Gnanamony M⁸, Subashini J¹⁰, Ram TS¹⁰, Bindu Dey¹¹, Singh N¹², Singh A¹², Jain SK¹³ and Jayshree RS^{6,14}

¹Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India, ²Regional Cancer Centre, Thiruvananthapuram, India, ³Tata Memorial Center, Parel, Mumbai, India, ⁴Advanced Centre for Treatment, Research, Education in Cancer, Kharghar, Navi Mumbai, India, ⁵Department of Radiotherapy, Kidwai Memorial Institute of Oncology, Bangalore, India, ⁶Department of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India, ⁷Cancer Foundation of India, Kolkata, India, ⁸Department of Clinical Virology, Christian Medical College, Vellore, India, ⁹Department of Obstetrics and Gynaecology, Christian Medical College, Vellore, India, ¹⁰Department of Radiation Oncology, Christian Medical College, Vellore, India, ¹¹Department of Biotechnology, New Delhi, India, ¹²Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India, ¹³Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India,

International Journal of Gynecological Cancer. 20(6):1046-1051,2010

Abstract:

Hypothesis: Assessment of the prevalence and type distribution of human papillomavirus (HPV) in squamous cell carcinomas (SCC) of the cervix across India was undertaken to estimate the impact of available prophylactic HPV-L1 vaccines in the country and to find out additional types that might be needed to be incorporated in second-generation vaccines.

Methods: High-risk (HR) HPVs were genotyped from 667 histopathologically confirmed cases of SCC from 6 different centers representing 4 regions across India: Advanced Centre for Treatment, Research and Education in Cancer, Mumbai; All India Institute of Medical Sciences, New Delhi; Cancer Foundation of India, Kolkata; Christian Medical College, Vellore; Kidwai Memorial Institute of Oncology, Bangalore; and Regional Cancer Center, Thiruvananthapuram. Human papillomaviruses in tumor biopsies were analyzed by Xcytonscreen HPV based on PGMY09/11 multiplex polymerase chain reaction and reverse dot blot assay.

Results: Overall viral prevalence across India was not different; 92.1% of 667 cases harbored HPV; 8% were negative. Infection with single HR type was seen in 86.8%: predominant types being HPV-16 followed by HPV-18, -45, -73, -31, -56, -52, -58, -59, -33, -68, -51, -35, -26, and -39. Human papillomavirus types 16/18-positive fraction formed 79.6%; other types comprised 12.4%.

Conclusions: Prophylactic HPV-16/18-L1 vaccines would provide greater than 75% protection against SCC in India. Ranking and frequencies of non-16/18 types were different from earlier reports. Hence, considering the possibility of promotion of persistence of nonvaccine types in the vaccinees due to original antigenic sin and the lack of organized screening programs in India, a broad-based vaccine approach would be appropriate.